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Riccati Matrix Differential Equation
Formulation for the Analysis of Nonuniform
Multiple Coupled Microstrip Lines

Jen-Tsai Kuo, Member, IEEE

Abstract— A Riccati matrix differential equation (RMDE) is
formulated for analyzing nonuniform coupled microstrip lines
(NCML’s) in the frequency domain. The formulation is based on
a reciprocity-related definition in the theory of multiconductor
transmission lines under quasi-TEM assumption. The hybrid-
mode nature of modal phase velocities and strip characteristic
impedances for multiconductor microstrip structure is included.
The nonlinear RMDE is first transformed into a first-order linear
differential matrix equation which can be efficiently solved using
method of moments. A convergence study is performed to investi-
gate the sufficient number of basis functions used in the method.
The voltage-scattering parameters of a tapered microstrip and
two three-line structures are presented. The frequency responses
of a pair of nonuniform coupled lines are measured and compared
with calculated results.

1. INTRODUCTION

ONUNIFORM coupled microstrip lines (NCML’s) play
Nan important role in both analog and digital microwave
integrated circuits. Using NCML’s, for example, a folded all-
pass two-port network [1] and a directional coupler [1], [2]
can be realized with high coupling values operating over
an ultra-wide frequency band. To date, NCML’s serve as
the interconnections in most chip packages for digital inte-
grated circuits of switching speed covering the microwave or
millimeter-wave regime [3]-[9]. With the advances of today’s
semiconductor fabrication technology. the major portion of
delay time in a microwave integrated circuit (MIC) can be
due to these interconnection lines [3}. One possible way for
reducing the delay time is to increase the density of the
interconnecting NCML’s. As the NCML’s become shorter
or are placed closer, the nonuniformity of the lines must be
properly designed in order to obtain transmitted signals with
sufficiently high quality.

When high-speed signal travels along NCML.’s, the received
signal at the load end can be degraded due to 1) dispersion, 2)
cross talk, 3) losses. and 4) reflections. The cross talk and dis-
persion are due to the differences of relative effective dielectric
constants for different modes and at different frequencies,
respectively. The losses which include conductor, dielectric,
and radiation attenuation factors will lower the power level of
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the received signal. If the lines are electrically short and made
on a low-loss substrate, the radiation can dominate the loss
mechanism. Reflections are caused by the position-dependent
impedance values along the lines. Note that all the aforesaid
factors depend on the nonuniformity of the lines and on the
operation frequency which make the characterization of the
NCML’s network become a complicated task.

Several methods have been developed to analyze multiple
NCML’s. Mehalic and Mittra [4] investigated the tapered
multiple microstrip lines using a spatial iteration-perturbation
approach technique. Oh and Schutt-Aine [5] analyzed the
nonuniform lines based on a time-domain scattering parameter
formulation incorporated with the closed-form expressions of
voltage variables for divided short uniform lossless lines, Mao
and Li proposed a method of convolution-characteristic [6] and
a method of equivalent cascaded network chain [7] to handle
the transient response of NCML’s. Palusinski and Lee [3]
used Chebyshev polynomials to expand the current and voltage
along the nonuniform lines in the time-domain to predict the
reflections and cross talk of general multiple coupled line
systems.

In frequency domain, Arabi et al. [8] presented an electri-
cal field integral equation formulation based on a combined
approach of uvsing closed-form near and far field approxima-
tions for the Sommerfeld microstrip Green’s functions. The
accuracy of this technique can be set to any desired value.
In [9], Pan and his colleagues extended the method in [3] to
the frequency domain. The advantages of analyzing NCML’s
in the frequency domain over the time domain were also
discussed.

To calculate the input reflection coefficient matrix of ter-
minated NCML’s, we derive a differential matrix equation,
which is known as the Riccati matrix differential equation
(RMDE), based on a reciprocity-related definition of the line
voltages and currents for hybrid-mode multiple coupled mi-
crostrips. The RMDE is expressed in terms of the normal mode
parameters of coupled microstrips and solved by method of
moments. The method of solution is also extended to calculate
the scattering parameters of 2/N-port NCML’s networks.

The presentation is organized as follows. Section II de-
scribes the background of the mathematical modeling of
NCML’s and lists the mathematical formulas to describe the
reflection along the lines. Section III presents the method of
solution to the nonlinear RMDE. In Section IV, the conver-
gence behavior of the analysis method is investigated and
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Fig. 1. A system of N-conductor nonuniform coupled microstrip lines.

several numerical aspects are discussed. Numerical results for
certain nonuniform single microstrip and. three-line structures
are presented and discussed. Section V compares the mea-
sured frequency responses of a nonuniform two-line structure
with the calculated results. Finally, Section VI draws the
conclusion.

II. THE RICCATI MATRIX DIFFERENTIAL EQUATION (RMDE)

It is known that a system of uniform N -conductor coupled
microstrip lines and a ground line support N dominant or
quasi-TEM modes. For the NCML’s in Fig. 1, we neglect
the fringing fields, which produces radiation loss, caused by
the gradual change of waveguide cross section. For lines with
abrupt discontinuities, field-theoretical oriented formulations,
such as that in [8], can be referred to enhance accuracy of
results. At any z along the NCML’s, through the full-wave
solution, an N x N matrix [Mj], called the eigencurrent
matrix, can be obtained [10]. Of [M;] each column vector
consists of total currents on the lines for a given mode. Based
on the orthogonality of modal voltage and current vectors,
an eigenvoltage matrix [My] is uniquely defined [11]. For
each mode, inner product of the eigenvoltage and eigencurrent
vectors is set to be the total electromagnetic power transfer.
This is an important fact that leads our field problem to be
able to be formulated by circuit quantities.

The characteristic admittance matrix along the lines is given
by [11]

[Yo] = [My][My]L. (1)

It can be shown that [Yc] is symmetric and the important
aspect of reciprocity is guaranteed. If the load network has an
admittance matrix identical to the [Y¢] of the NCML’s at the
load end, then there is no reflection.

The equivalent distributed capacitance matrix [C] and in-
ductance matrix [L] along the lines can be derived [10]

[C] = [M]] diag (Bx/w)[My] ™ 2
[L] = [Mv]diag (8 /w) (M) 3)

where w is the angular frequency and [y is the phase constant
of the kth mode. Note that all the entries in [Mj], [My],
[Ycl, [L], and [C] are dispersive and position-varying along
the NCML'’s. Let [I] and [V] be the line current and line
voltage column vectors of which the kth entries are the total
current and voltage on the kth line, respectively. Then, from
the multiconductor transmission-line theory [3]

[1] = [YanllV] @
V' =-[2]11] (5)
1) = -[Y]iv] ©)

where [Y;,,] is the input admittance matrix seen at z toward the
load, [Z] and [Y] are, respectively, the series impedance and
shunt admittance matrices per unit length of the NCML’s, and
the prime (') represents the derivative with respect to z. If the
tapered lines are lossless, [Z] = jw[L] and [Y] = jw|[C].
Let the reflection coefficient matrix along the longitudinal
direction be [py], then [Y;,] and [py] are related by [10]

[Yin] = [Ye](IU] = [ov]) (U] + [pv]) ™ ™

where [U] is the identity matrix of size N x N. Substitution
of (4) and (5) into (6) leads to

Yin]' = [Yan][Z][Yen] + [Y] = 0. ®
Inserting (7) into (8), one obtains

lev]” = 5([Wlev] + [ov]ivD)
+ (Ul + v DIGIAU] = lov]) )
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where [1] = [Yo] '[Y] = [Z][Yc] = [My]diag (B )[My] ™!
and [G] = [Yc] 7 Y] /2. Note that (8) and (9) are known as
the RMDE {[12] which is nonlinear. It is believed that [13] is
the first literature that formulated the RMDE (8) for studying
general nonuniform transmission lines.

In the case of single nonuniform line. (9) becomes the
Riccati scalar differential equation (RSDE) [12]. To simplify
this nonlinear differential equation, many authors [14-16]
neglected the p? term. The solution of p, at z = 0 can
then be obtained through a simple Fourier transform of a
function of the line characteristic impedance. Based on the
transform, synthesis of matching transformers and couplers
using nonuniform transmission lines have been developed [15],
[16]. Note that the legitimacy of the negligence is relied on
the fact that p?2 < 1 along the line. Thus, an error in p,
will be generated at low frequencies for lines used to match
impedances with large ratio. The following section formulates
the method of solution to (9) in which no such error will occur.

III. METHOD OF SOLUTION

It is found that the RMDE can always be transformed into
a linear equation [12]. This can be done by defining

D] [An Ap)[D
R| — |Ax Ax||R
where [A1s] = [421] = [G] and [422] = [Au]* = j[b] -
[G] for lossless NCML’s. The asterisk denotes the complex

conjugate operation. It has been shown in [12] that if [D] and
[R] satisfy (10) then

(10)

[ov] = [RI[D]™

is the solution to (9) provided that [D] is nonsingular for all
z. The matrix equation (10) can be rewritten as

[X]" = [A)[X]

(1D

(12)

where [X] = [DTRT]T and the superscript T stands for the
transpose operation. It is interesting to note that if [V'] and [I]
in (4) through (6) are replaced by

V]i=[V*+[V7] (13)

1] =[Ye)((VTI-[V7D)

where [V1] and [V ] are the forward and backward traveling
voltage wave vectors along the NCML’s, then one can find
that [V*] = [VF+TV-T]T also satisfies (12). In other words,
the nonsingular matrix [D] consists of N linearly indepen-
dent [V *]s as its column vectors and [R] consists of the
corresponding N[V ™| vectors.

Analytical solution to (12) is difficult or impossible to obtain
since the eigenvalues and eigenvectors of the complex matrix
function [A4] are position-dependent [17]. To solve (12). we use
the method of moments which is closely related to the case of
a single nonuniform line in [18]. [A] and [X] are expanded as

(14)

My
(15)

Mo

X] = > [Xm]Cim(2)

m=0

(16)

where C,, (%) is the shifted Chebyshev polynomial of order m
of the first kind defined over 0 < z < L, L being the length
of the NCML's, and [X,,] and [A,,] are constant matrices.
The matrix [A] is first expanded into a linear combination
of Cr,(2) of which each coefficient matrix can be obtained
by Gaussian Chebyshev quadratures [19]. Then [A4,,]s can be
obtained since each (', (z) is known as a polynomial of z of
degree m. Following the method in [20], more precisely the
Galerkin procedure in method of moments, one can obtain

[(X] ~ [QIX(L)] (17)

and
]\[1
QI =]+ Y An]® (PIH™)  (18)
m=0
where [U] is the identity matrix of size 2N (Ma+1)x 2N (Ma+
1). [P] and [H] are the operation matrices of integration and
of z-multiplication. respectively, of the shifted Chebyshev
polynomials. They are given by

[ A A A2 Az AN—1  An ]
—Qp 0 —12 0 0 0
0 — 1 0 -3 0 0
[Pl=1{ 0 0 -ay O : :
0 0 0 —ag —NN—1 0
: : : 0 —nN
L 0 0 0 0 QN1 0 d
(19)
and
[H] = (L/2)[H.] (20)

where oo = L/2, o = L/4(k+1) fork > 1.5, =m =0,
me = L/4(1—k) for k > 2, and A\ = ap +mx for k& > 0. [H,]
is a tridiagonal matrix with all diagonal entries and the (2, 1)th
one being 1 and all the other nonzero entries being 0.5.

In (18), ® denotes the Kronecker product, defined as

[Al®[B]
[A]B(1,1) [A]lB(L, 2) [A]B(1. k)
_|[4]B(2,1) [4]B(2,2) [4]B(2, k) o
ABLY ABIL2) - (AR

Note that only the entries in the first 2N columns in
[@Q] are useful in calculating the network parameters since
[X(L)] = [D(L)TR(L)T0 0---0]T. If [Q] is partitioned into
2(M; + 1) x 2(M; + 1) submatrices [g].,. of each the size is
N x N, then it can be readily shown that

VHO)] = [Au]VED]+ [A]VT(L)]  (22)
[V7(0)] = [An][VT(L)] + [Aa2][V ™ (L)] (23)
with
M,
[A,) =D (=1)™dlamte,  Gj=lor2. (24

m=0
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Fig. 2. Planar view of the nonuniform coupled microstrips for investigating
convergence behavior of the method. The load is assumed perfectly matched.
W{z) = 0.36 + 0.84(z/L) mm, S(z) = 1.8 — W(z) mm, L = 10 mm.
The dielectric substrate has €, = 12.9 and height A = 1 mm.
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Fig. 3. Comparison of the input reflection coefficients of an exponential '
microstrip taper on a substrate with ¢, = 8 designed for transforming
Zg = 63.58 Q to Zp = 117.99 Q, L = 9k = 9 mm. Response (a) is
the complete solution to the RSDE and (b) is that to the RSDE with the p%
term being omitted. The width profile of the tapered microstrip see [16, Fig.
7]. The line characteristic impedances use dc values.

Following the voltage scattering parameter matrices used in
[21] and- defining

V=(0 Su] [Si2]][IVF(O
[[[V+((L))]]] - Hszj %522” “v—((L))]]} 25)
one can obtain
[S11] = [Aa1){An] 7! (26a)
[S12] = [Aze] — [Az1][A11] THAL] (26b)
[Sa1] = [An] ™! (26¢)
[Sa2] = —[A11] M Axa]- 26d)

The voltage scattering parameter matrices can be used to
characterize the 2N-port NCML’s network for any linear
time-invariant termination conditions at both the source and
the load ends. However, (22) and (23) are still useful in
calculating some important network parameters. For example,
when [py (L)] exists at the load end, then the input reflection
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.TABLE 1
CONVERGENCE ANALYSIS OF THE PROPOSED METHOD

He )11 | x10%=|[p,(0))(2,2) | x 107
W 4 s 6 7 8 9

2.0385 2.0386
19325 1.9322
1.9379 1.9379
1.9375 1.9376
1.9375 1.9376

[ 01(1,2) | X10°=][p,(0)](2,1)| X 107

M, 4 5 6 7 8 9

1.0058
1.1008
1.0968
1.0970
1.0970

10

2.0387
1.9320
1.9379
1.9376
1.9376

2.0353
1.9514
1.9569
1.9569
19569

2.0353 2.0379 2.0385
19318 1.9325 1.9325
1.9364 1.9370 1.9379
1.9359 1.9365 1.9375
19360 1.9365 1.9375

10

1.0058
1.0936
1.0890
1.0801
10891

1.0076
1.1004
1.0969
1.0971
1.0971

1.0074
1.1004
1.0965
1.0967
1.0967

1.0074
1.1005
1.0966
1.0967
1.0967

1.0074
1.1006
1.0966
1.0967
1.0967

1.0075
1.1003
1.0966
1.0967
1.0967

—
NOMO\A

matrix can be found as

[ov(0)] = ([A21] + [As2][pv (L))
([Au] + [Anallpv (D)) (26)

IV. RESULTS

A. The Database of NCML’s Normal Mode Parameters

To calculate the 2/N-port parameters of NCML’s, we use
spectral domain approach (SDA) [10] to evaluate the normal
mode parameters. For all NCML’s addressed in this paper,
the evaluations are sampled at z,, = mL/20, m = 0(1)20,
with L being the length of lines, for frequencies at 0.5» GHz,
n = integer. At each frequency point, each entry of [y] and
[G] in (9) is approximated by a cubic spline interpolation for
use in the numerical quadrature for finding [A.]s in (15).

B. Convergence Study and Some Numerical Aspects

Table I shows convergence behavior of the input reflection
coefficients [py(0)] for a tapered two-line structure of which
the planar geometry is drawn in Fig. 2. The even- and odd-
modes are found to have relative effective dielectric constants
close to 9, thus the length of lines is about one guided
wavelength for both modes at 10 GHz. Note that, due to
the structural symmetry, |[pv(0)](2, 2)| = |[pv(0)](1, 1)| and
llov ()2, DI = |lpv(0)](1, 2)]. '

In Table I, the listed results are according to values of M
(See (15)) and M; (See (16)) ranging from 4 to 10 and from 4
to 12, respectively. The execution CPU time is dominated by
M, for setting up the matrix [Q] in (18). For both the (1, 1)th
and (1, 2)th values, it shows that using Mz = 4 produces
results with errors with several percents. For M, > 8, when
M is increased from 6 to 10, both sets of the reflection values
converge to at least four significant digits. According to our
experience, to have the same converged results at 20 GHz, it
requires M, = My = 12.
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Fig. 4. The voltage-scattering parameters for two tapered three-line microstrips. 2 = 0.508 mm, e, = 4.2, W(z) = W,(1+ 2z/L), W, = 0.24 mm, and
L =20 mm. S(z) = 0.5W,(1+ z/L) for structure A and S(z) = 2.5W,(1 + z/L) for structure B. (a) |S11]- (b) |S21|. (¢} |S12]. (@) |S22|.

C. The Input Reﬂectibn Coefficient for a Tapered Microstrip

To calculate the reflection coefficient of a nonuniform
microstrip, the Riccati scalar differential equation (RSDE)
reduced from (9) can be invoked. When the p%, term is omitted
in the equation, it is equivalent in our method of solution
to enforce that [A12] = 0 and [Ags] = [A11]* = j[7] (See
(10)). Therefore it is easy to investigate the effectiveness of
the negligence of the p2 term on the results using our readily
developed program. We use an exponential microstrip taper,
of which the z-dependent width profile is in [16, Fig. 7], as
the test structure. The line characteristic impedances use the
dc values. The length of the line is 9 mm which corresponds
to L/A, = 0.6 at 20 GHz.

The taper is designed for transforming Z; = 117.99 Q
1o Zg = 63.58 Q. So the reflection coefficient at dc is
(Zr, - Zs)/(Z1 + Zs) = 0.3. In Fig. 3, the solid and dotted
responses compare the solutions to the RSDE with and without
the p2 term. Both curves agree very well for frequencies
higher than 3 GHz, at which the line is about one fifth of
guided wavelength. The values of |p,(0)| for both cases have

" a deviation of 3% for frequencies less than 1 GHz where the

value of p,(z) remains nearly constant (0.3) all over the line.
It is believed that the influence of neglecting the p? term on
the solution to the RSDE for analyzing tapered microstrip is
reported for the first time.

D. The 2N -Port Network Parameters for
Tapered Three-Line Structures

Fig. 4 compares responses for two tapered three-line struc-
tures with the same line width geometry but different line
spacing. The solid lines represent the parameters for structure
A which has smaller line spacing. More interline coupling or
cross talk voltage level is expected for structure A than B.
Again, due to the structural symmetry, only five entries of
each S-parameter matrix need specifying.

Before we look into details on the 2/N-port parameters of
the NCML’s, let us review certain important formulas that
can help understanding of the results. The S-parameters we
use here are based on the voltage wave instead of power
wave definition. Thus, at zero frequency, the [S11] and [So;]
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are, respectively, the reflection ([py]) and transmission ([Tv])
coefficient matrices of a step impedance junction with source
admittance matrix [Y(0)] and load [Y¢ (L)), i.e., [10]

[ov] = (Yo (0)] + [Ye (L)) ~H([Ye(0)] - Yo(L)) @D
and
[Tv] = 2([Yc(0)] + [Yo (L)) " [Ye (0))-

The results of [Sq2] and [Sa2] matrices at dc can be known in
a similar fashion. For closely packed symmetrical three-line
microstrip [10], [Y¢](2, 2) < [Y¢](1, 1) = [Y](3, 3) and
the diagonal elements of [Y¢| decrease as the line spacing is
decreased. Thus, the [Y¢|(%, k), k = 1, 2, and 3, for structure
A are smaller than those for B.

Fig. 4(a) compares the |S;;| responses. For each structure,
entry (1, 1) is larger than entry (2, 2). It means that, when
the lines are perfectly terminated at the load end, the relative
reflection at line 1 due to an excitation at line 1 is larger
than that at line 2 due to an excitation at line 2. Entries
(1, 1) and (2, 2) for structure B, which has smaller interline
coupling, have closer and larger values than those for structure
A. However, entries (1, 2), (2, 3), and (1, 3) for B are smaller
than those for A.

The forward transmission coefficient or |S»1| responses are
plotted in Fig. 4(b). Structure A has larger entry values than

(28)

B. The (1, 1) and (2, 2) values are firstly increased at lower

frequencies and reach their maxima at about 4 GHz, where the
|S11| entries have their minima, then decrease as frequency is
further increased due to the increase of magnitudes of entries
(1, 2), (2, 3), and (1, 3). These three entries can be interpreted
as the “cross talk” for this NCML’s structure.

The |S12| responses are shown in Fig. 4(c). The relative
cross talk voltage levels are larger than those for |Ss | entries.
Note that these cross talk voltage levels are not zero at dc.
This can be explained from (28). Entries (1, 1) and (2, 2) for
structure B are larger than those for structure A.

The |S52| responses are plotted in Fig. 4(d). According to
(27), the |S55] entries should have nearly the same magnitudes
as the corresponding ones of |S1;| at lower frequencies.

D. Experimental Measurements

We measure the responses of a pair of symmetrical nonuni-
form coupled microstrips of which the planar view is shown
in Fig. 5(a). At both ends of the circuit, the line width is
chosen to have 50 {2 characteristic impedance and the spacing
is 3.5 times the width so that the interline coupling can be
neglected [10]. The test circuit is fabricated on a low-loss
alumina substrate (¢, = 9.9, loss tangent tan § < 0.001). A
TaN (Tantalum Nitride) thin film resistive layer, sandwiched
between the substrate and metal, can be used for termination
design. The termination resistance value should be carefully
trimmed during the fabrication process since improper termi-
nation condition will cause unwanted reflections.

The measurement.is performed using the HP8510B network
analyzer and the results are shown in Fig. 5(b). The agreement
between the calculated and measured |S;;| responses is fairly
good. The predicted |Ss; | response, however, begins to deviate
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Fig. 5. The results for the experimental nonuniform coupled microstrips.
e = 9.9, h = 0254 mm, W; = 0.254 mm, Wy = 0.635 mm,
S1 = 0.889 mm, S = 0.508 mm, W(Z) = W; + (Wz - W1)2/4,
and S(z) = S1 + (S2 — S1)z/4. The structure is symmetric about z = 5.5
mm. (a) Circuit geometry. (b) Measured and calculated responses.
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from the experimental results at 5 GHz where the length of line
is about one half guided wavelength. The deviation could be
caused by dielectric {4), conductor (¢ ), and radiation losses.
Similar deviation is also reported for a tapered three-line
structure [4], where the fitness of prediction and measurement
can be made up at lower frequencies by including the oy
and . factors, but the radiation loss is still significant at the
higher frequency end. Note that the electrical length of the test
circuit in Fig. 5 is only about one sixteenth of that used in [4].
According to our experience of designing multiple coupled
microstrip lines on alumina substrate [10], the attenuation
factor including o4 and « is approximately 0.01 dB/mm. Thus
a4 and o could have only limited contribution to the deviation
in our experiment and the deviation should be mainly due to
the radiation caused by the line width nonuniformity.

V. CONCLUSION

A RMDE has been formulated for calculating the 2N-
port network parameters of nonuniform multiple coupled mi-
crostrips. The influence of neglecting p?, term in the Riccati
scalar differential equation on the input reflection coefficient
response of a microstrip taper is investigated. From the in-
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vestigation of two tapered three-line microstrips, the smaller
is the line spacing or the higher is the operation frequency,
the higher is the crosstalk level. From the experimental two-
line structure, the calculated and measured results agree well
at lower frequencies and start to deviate at the frequency at
which the radiation loss, due to the line width nonuniformity,
becomes important.
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