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Riccati Matrix Differential Equation

Formulation for the Analysis of Nonuniform

Multiple Coupled Microstrip Lines
Jen-Tsai Kuo.

Abstract— A Riccati matrix differential equation (RMDE) is
formulated for analyzing nonuniform coupled microstrip lines

(NCML’S) in the frequency domain. The formulation is based on
a reciprocity-related definition in the theory of multiconductor
transmission lines under quasi-TEM assumption. The hybrid-
mode nature of modal phase velocities and strip characteristic

impedances for multiconductor microstrip structure is included.

The nonlinear RMDE is first transformed into a first-order linear
differential matrix equation which can be efficiently solved using
method of moments. A convergence study is performed to investi-
gate the sufficient number of basis functions used in the method.
The voltage-scattering parameters of a tapered microstrip and

two three-line structures are presented. The frequency responses

of a pair of nonuniform coupled lines are measured and compared

with calculated results.

I. INTRODUCTION

N ONUNIFORM coupled microstrip lines (NCML’s) play

an important role in both analog and digital microwave

integrated circuits. Using NCML’s, for example, a folded all-

pass two-port network [1] and a directional coupler [1], [2]

can be realized with high coupling values operating over

an ultra-wide frequency band. To date, NCML’s serve as

the interconnections in most chip packages for digital inte-

grated circuits of switching speed covering the microwave or

millimeter-wave regime [3]–[9], With the advances of today’s

semiconductor fabrication technology. the major portion of

delay time in a microwave integrated circuit (MIC) can be

due to these interconnection lines [3]. One possible way for

reducing the delay time is to increase the density of the

interconnecting NCML’s. As the NCML’s become shorter

or are placed closer, the nonuniformity of the lines must be

properly designed in order to obtain transmitted signals with

sufficiently high quality.

When high-speed signal travels along NCML’S, the received

signal at the load end can be degraded due to 1) dispersion, 2)

cross talk, 3) losses, and 4) reflections. The cross talk and dis-

persion are due to the differences of relative effective dielectric

constants for different modes and at different frequencies,

respectively. The losses which include conductor, dielectric,

and radiation attenuation factors will lower the power level of
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the received signal. If the lines are electrically short and made

on a low-loss substrate, the radiation can dominate the loss

mechanism. Reflections are caused by the position-dependent

impedance values along the lines. Note that all the aforesaid

factors depend on the nonuniformity of the lines and on the

operation frequency which make the characterization of the

NCML’s network become a complicated task.

Several methods have been developed to analyze multiple

NCML’s, Mehalic and Mittra [4] investigated the tapered

multiple microstrip lines using a spatial iteration-perturbation

approach technique. Oh and Schutt-Aine [5] analyzed the

nonuniform lines based on a time-domain scattering parameter

formulation incorporated with the closed-form expressions of

voltage variables for divided short uniform loss less lines, Mao

and Li proposed a method of convolution-characteristic [6] and

a method of equivalent cascaded network chain [7] to handle

the transient response of NCML’s. Palusinski and Lee [3]

used Chebyshev polynomials to expand the current and voltage

along the nonuniform lines in the time-domain to predict the

reflections and cross talk of general multiple coupled line

systems.

In frequency domain, Arabi et a/. [8] presented an electri-

cal field integral equation formulation based on a combined

approach of using closed-form near and far field approxima-

tions for the Sommerfeld microstrip Green’s functions. The

accuracy of this technique can be set to any desired value.

In [9], Pan and his colleagues extended the method in [3] to

the frequency domain. The advantages of analyzing NCML’s

in the frequency domain over the time domain were also

discussed.

To calculate the input reflection coefficient matrix of ter-

minated NCML’s, we derive a differential matrix equation,

which is known as the Riccati matrix differential equation

(RMDE), based on a reciprocity-related definition of the line
voltages and currents for hybrid-mode multiple coupled mi-

crostrips. The RMDE is expressed in terms of the normal mode

parameters of coupled microstrips and solved by method of

moments. The method of solution is also extended to calculate

the scattering parameters of 211-port NCML’s networks.

The presentation is organized as follows. Section II de-

scribes the background of the mathematical modeling of

NCML’s and lists the mathematical formulas to describe the

reflection along the lines. Section III presents the method of

solution to the nonlinear RMDE. In Section IV, the conver-

gence behavior of the analysis method is investigated and
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Fig. 1. A system of N-conductor nonuniform coupled microstrip lines.

T

several numerical aspects are discussed. Numerical results for

certain nonuniform single microstrip and. three-line structures

are presented and discussed. Section V compares the mea-

sured frequency responses of a nonuniform two-line structure

with the calculated results. Finally, Section VI draws the

conclusion.

II. THE RICCATI MATRIX DIFFERENTIAL EQUATION (RMDE)

It is known that a system of uniform ~-conductor coupled

microstrip lines and a ground line support ~ dominant or

quasi-TEM modes. For the NCML’s in Fig. 1, we neglect

the fringing fields, which produces radiation loss, caused by

the gradual change of waveguide cross section. For lines with

abrupt discontinuities, field-theoretical oriented formulations,

such as that in [8], can be referred to enhance accuracy of

results. At any z along the NCML’s, through the full-wave

solution, an lV x IV matrix [AII], called the eigencurrent

matrix, can be obtained [10]. Of [~r] each column vector

consists of total currents, on the lines for a given mode. Based

on the orthogonality of modal voltage and current vectors,

an eigenvoltage matrix [illv] is uniquely defined [11]. For

each mode, inner product of the eigenvoltage and eigencurrent

vectors is set to be the total electromagnetic power transfer.

This is an important fact that leads our field problem to be

able to be formulated by circuit quantities.

The characteristic admittance matrix along the lines is given

by [11]

[Ye] = [M,][ik$]-’. (1)

It can be shown that [Yc] is symmetric and the important

aspect of reciprocity is guaranteed. If the load network has an

admittance matrix identical to the [Yc] of the NCML’s at the

load end, then there is no reflection.

The equivalent distributed capacitance matrix [C] and in-

ductance matrix [L] along the lines can be derived [10]

[C] = [MI] diag (pk/w)[IWv]-’ (2)

[L] = [Llv] diag (,b~/u)[LII]-l (3)

where w is the angular frequency and ,B~ is the phase constant

of the kth mode. Note that all the entries in [lWI], [Lfv],

[YC], [L], and [C] are dispersive and position-varying along

the NCML’s. Let [1] and [V] be the line current and line

voltage column vectors of which the kth entries are the total

current and voltage on the kth line, respectively. Then, from

the multiconductor transmission-line theory [3]

[1] = [Hn][v] (4)

[v]’ = -[2] [1] (5)

[1]’ = -[Y] [v] (6)

where [Y~~] is the input admittance matrix seen at z toward the

load, [Z] and [Y] are, respectively, the series impedance and

shunt admittance matrices per unit length of the NCML’s, and

the prime (’) represents the derivative with respect to Z. If the

tapered lines are lossless, [Z] = jw[L] and [Y] = ju[c’].

Let the reflection coefficient matrix along the longitudinal

direction be [pv], then [Yim] and [pv] are related by [10]

[w= [W]([U - [Pv])([u + [ml)-’ (7)

where [u] is the identity matrix of size N x N. Substitution

of (4) and (5) into (6) leads to

[Kn]’ - [yn] [z] [I&J+ [Y] = o. (8)

Inserting (7) into (8), one obtains

[w]’ = ~([-d[ml + [PVI[71)

+ ([u] + [PV])[G] ([U] – [PV]) (9)
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where [~] = [Yc]’1 [Y] = [Z] [Yc] = [MI] diag (~~ ) [lkfv]’1

and [G] = [YC]’1 [Ye]’/2. Note that (8) and (9) are known as

the RMDE [12] which is nonlinear. It is believed that [13] is

the first literature that formulated the RMDE (8) for studying

general nonuniform transmission lines.

In the case of single nonuniform line, (9) becomes the

Riccati scalar differential equation (RSDE) [12]. To simplify

this nonlinear differential equation, many authors [14–16]

neglected the p; term. The solution of pt, at z = O can

then be obtained through a simple Fourier transform of a

function of the line characteristic impedance. Based on the

transform, synthesis of matching transformers and couplers

using nonuniform transmission lines have been developed [15],

[16]. Note that the legitimacy of the negligence is relied on

the fact that p: << 1 along the line. Thus, an error in PV

will be generated at low frequencies for lines used to match

impedances with large ratio. The following section formulates

the method of solution to (9) in which no such error will occur.

III. METHOD OF SOLUTION

It is found that the RMDE can always be transformed into

a linear equation [12]. This can be done by defining

(lo)

where [A12] = [Azl] = [G] and [A22] = [All]’ = j’[y] –

[G] for lossless NCML’S. The asterisk denotes the complex

conjugate operation. It has been shown in [12] that if [D] and

[R] satisfy (10) then

[WI = [~1 [w’ (11)

is the solution to (9) provided that [D] is nonsingular for all

z. The matrix equation (10) can be rewritten as

[X]’ = [A][X] (12)

where [X] = [DTRT] T and the superscript T stands for the

transpose operation. It is interesting to note that if [V] and [1]

in (4) through (6) are replaced by

[v] = [v+]+ [v-] (13)

[1] = [Y~]([v+] - [v-]) (14)

where [V+] and [V– ] are the forward and backward traveling

voltage wave vectors along the NCML’s, then one can find

that [V+] = [V+ TV–T]T also satisfies (12). In other words,

the nonsingular matrix [D] consists of lV linearly indepen-

dent [V+]s as its column vectors and [R] consists of the

corresponding N [V-–] vectors.

Analytical solution to(12) is difficult or impossible to obtain

since the eigenvalues and eigenvectors of the complex matrix

function [A] are position-dependent [17]. To solve (12), we use

the method of moments which is closely related to the case of

a single nonuniform line in [18]. [A] and [X] are expanded as

All

[A] = ~ [AJzm (15)
Tn=o

A!fz

[x] = ~ [xm]cm(,z) (16)

m=O

where C’~ (z) is the shifted Chebyshev polynomial of order m

of the first kind defined over O < z s L, L being the length

of the NCML’s, and [.Ym] and [A,~ ] are constant matrices.

The matrix [A] is first expanded into a linear combination

of C“~ (~) of which each coefficient matrix can be obtained

by Gaussian Chebyshev quadrature [19]. Then [A~]s can be

obtained since each Cm(z) is known as a polynomial of z of

degree m. Following the method in [20], more precisely the

Galerkin procedure in method of moments, one can obtain

[x] x [Q][X(L)] (17)

and
Af*

[Q]-’ = [U]+ ~ [Am] @ ([~][~]m) (18)
m=o

where [U] is the identity matrix of size 21V(Afz+ 1) x 21V(A4Z +

1). [P] and [H] are the operation matrices of integration and

of z-multiplication. respectively, of the shifted Chebyshev

polynomials, They are given by

[P] =

and

A) Al k k ~N.1 AN

–(2!0 o –’h’2 o 0 0

0 –ill o –7)3 ““” o 0

00 —(Z2 o

000 —0!3 –q~–l o

0 – ‘7N
0000 ‘~N_l O

(

[H] = (L/2)[HO] (20)

where o!O = L/2, ~k = L/4(k + 1) for k z 1. qo = ql = O,

?lk = L/4(1–k) fork >2, and Ak = ~~+~k fork >0. [110]

is a tridiagonal matrix with all diagonal entries and the (2, 1)th

one being 1 and all the other nonzero entries being 0.5.

In (18), @ denotes the Kronecker product, defined as

[A] @ [B]

[

[A]13(l, 1) [.4]13(1, 2) ~ ~ [A]l?(l, k)

[A]B(2, 1) [A]B(2, 2) ~ [.4]B(2, k)
——

~ 1
(21)

l[A]B(l, 1) [A]13(l, 2) ~~~ [A]B(k, k)~

Note that only the entries in the first 2N columns in

[Q] are useful in calculating the network parameters since

[A”(L)] = [D(L) TR(L)TO O ~ O]T. If [Q] is partitioned into
2(M2 + 1) x 2(M2 + 1) submatrices [q],j. of each the size is

N x N, then it can be readily shown that

[V+(0)] = [A~I][V+(L)] + [~12][V-(L)] (22)

[V-(0)] = [A21][V+(L)] + [A22][V-(L)] (23)

with
M1

[A,,] = ~(–Qm[d2m+z,, ! i,~’=lor2. (24)
Tn=o
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Pv(o)

Z=o z=L

Fig. 2. Planar view of the nonuniform coupled microstrips for investigating

convergence behavior of the method. The load is assumed perfectly matched.

W(z) = 0.36 + 0.84(z/L) mm, S(z) = 1.8 – W(z) mm, L = 10 mm.
The dielectric substrate has e, = 12.9 and height h = 1 mm.

0.02 0.05 0.1 0.2 0.5 125 10 20

Frequency (GHz)

Fig. 3. Comparison of the input reflection coefficients of an exponential
microstrip taper on a substrate with .s~ = 8 designed for transforming
2.s = 63.58 Q to ZL = 117.99 0, L = 9h = 9 mm. Response (a) is

the complete solution to the RSDE and (b) is that to the RSDE with the p:
term being omitted. The width profile of the tapered microstrip see [16, Fig.

7]. The line characteristic impedances use dc vatues.

Following the voltage scattering parameter matrices used in

[21] and defining

[1[v-(o)] =

[V+(L)]

one can obtain

[s,,] = [A,

[Sl,] = [Az

[s,,] [s,2]

[$,,] [s22]

][A1l]-l

] - [A211[A:

[s2,] = [A,,]-l

[s22] = -[A,, ]-l[A,J

[

“[v+(o)]

[V-(L)].
(25)

(26a)

]-’[A12] (26b)

(26c)

(26d)

The voltage scattering parameter matrices can be used to

characterize the 2N-port NCML’s network for any linear

time-invariant termination conditions at both the source and

the load ends. However, (22) and (23) are still useful in

calculating some important network parameters. For example,

when [pv (L)] exists at the load end, then the input reflection

TABLE I

CONVERGENCEANALYSIS OF THE PROPOSEDMETHOD

IWO)](W I Xl@= llpJo)](2,2) I X102

2
45 67 8 9 10

,
4 2.0353 2.0353 2.0379 2.0385 2.0385 2.0386 2.0387
6 1.9514 1.9318 1.9325 1,9325 1.9325 1.9322 1.9320
8 1.9569 1.9364 1.9370 1.9379 1.9379 1.9379 1.9379
10 1.9569 1.9359 1.9365 1.9375 1.9375 1.9376 1.9376

12 1.9569 1.9360 1.9365 1.9375 1.9375 1.9376 1.9376

~

4
6
8

10

12

IW(0)1(1,2) I XIO’= I ~~0)](’W)l X102

45 67 8 9 10

1.0058 1,0058 1.0076 1,0074 1.0074 1.0074 1.0075

1.0936 1.1008 L1OO4 1.1004 L1OO5 1.1006 1.1003

1.0890 1.0968 1.0969 1.0965 1.0966 1.0966 1.0966

1.0891 1.0970 1.0971 1.0967 1.0967 1.0967 1.0967

1.0891 1.0970 1.0971 1.0967 1.0967 1.0967 1.0967

matrix can be found as

[PV(0)] = ([A211 + [A221[Pv(~)1)
.([All]

IV. RESULTS

+ [A12][pv(L)])-1 (26)

A. The Database of NCML’s Normal Mode Parameters

To calculate the 2N-port parameters of NCML’S, we use

spectral domain approach (SDA) [10] to evaluate the normal

mode parameters. For all NCML’s addressed in this paper,

the evaluations are sampled at z~ = mL/20, m = 0(1)20,

with L being the length of lines, for frequencies at 0.5n GHz,
~ = integer. At each frequency point, each entry of [~] and

[G] in (9) is approximated by a cubic spline interpolation for

use in the numerical quadrature for finding [An]s in (15).

B. Convergence Study and Some Numerical Aspects

Table I shows convergence behavior of the input reflection

coefficients [pv (0)] for a tapered two-line structure of which

the planar geometry is drawn in Fig. 2. The even- and odd-

modes are found to have relative effective dielectric constants

close to 9, thus the length of lines is about one guided

wavelength for both modes at 10 GHz. Note that, due to

the structural symmetry, I[pv (0)] (2, 2) I = I[pv (0)] (1, 1) I and

I[PV(0)I(2> 1)1 = IIPV(0)](l, ‘2)1.
In Table I, the listed results are according to values of IMl

(See (15)) and Lfz (See (16)) ranging from 4 to 10 and from 4
to 12, respectively. The execution CPU time is dominated by

lM2 for setting up the matrix [Q] in (18). For both the (1, l)th
and (1, 2)th values, it shows that using IW2 = 4 produces

results with errors with several percents. For Mz > 8, when

Ml is increased from 6 to 10, both sets of the reflection values

converge to at least four significant digits. According to our

experience, to have the same converged results at 20 GHz, it

requires Ml = Mz = 12.
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Fig. 4. The voltage-scattering parameters for two tapered three-line microstrips. h = 0.508 mm, e, = 4.2, W(z) = Wo (1 + 2z/-L), Wo = 0.24 mm, and
L = 20 mm. S(z) = 0.5 W’0(1 + z/L) for strnctnre A and S(z) = 2.5WO(1 + z/L) for structure B. (a) IS1lI. (b) 1S211. (c) 1S121. (d) 1S221.

C. The Input Re$ection Coe@cient for a Tapered Microstrip

To calculate the reflection coefficient of a nonuniform

microstrip, the Riccati scalar differential equation (RSDE)

reduced from (9) can be invoked. When the p; term is omitted

in the equation, it is equivalent in our method of solution

to enforce that [Alz] = O and [AM] = [All]* = y’[y] (See

(10)). Therefore it is easy to investigate the effectiveness of

the negligence of the p: term on the results using our readily

developed program, We use an exponential microstrip taper,

of which the z-dependent width profile is in [16, Fig. 7], as

the test structure. The line characteristic impedances use the

dc values. The length of the line is 9 mm wliich corresponds

to L/& = 0.6 at 20 GHz.
The taper is designed for transforming ZL = 117.99 0

to Zs = 63.58 f2. So the reflection coefficient at dc is

(ZL - 2s)/(2. + 2s) = 0.3. In Fig. 3, the solid and dotted

responses compare the solutions to the RSDE with and without

the p: term. Both curves agree very well for frequencies

higher than 3 GHz, at which the line is about one fifth of

guided wavelength. The values of Ipv (0) I for both cases have

a deviation of 3% for frequencies less than 1 GHz where the

value of p.(z) remains nearly constant (0.3) all over the line.

It is believed that the influence of neglecting the p: term on

the solution to the RSDE for analyzing tapered microstrip is

reported for the first time.

D. The 2N-Port Network Parameters for

Tapered Three-Line, Structures

Fig. 4 compares responses for two tapered three-line struc-

tures with the same line width geometry but different line

spacing. The solid lines represent the parameters for structure

A which has smaller line spacing. More interline coupling or

cross talk voltage level is expected for structure A than B.

Again, due to the structural symmetry, only five entries of
each S-parameter matrix need specifying.

Before we look into details on the 2N-port parameters of

the NCML’s, let us review certain important formulas that

can help understanding of the results. The S-parameters we

use here are based on the voltage wave instead of power

wave definition. Thus, at zero frequency, the [S1l] and [S21]
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are, respectively, the reflection ([pv]) and transmission ([TV])

coefficient matrices of a step impedance junction with source

admittance matrix [Yc (0)] and load [YC(L)], i.e., [10]

[w] = ([YC(0)I + [YC(L)I)-WC(0)I - [YC(L)l) (27)

and

[Tv] = 2([YC(0)] + [Y~(L)])-l[Yc(o)]. (28)

The results of [S12] and [S22] matrices at dc can be known in

a similar fashion. For closely packed symmetrical three-line

microstnp [10], [YC](2, 2) < [Yc](l, 1) = [YC](3, 3) and

the diagonal elements of [Yc] decrease as the line spacing is

decreased. Thus, the [Yc] (k, k), k = 1, 2, and 3, for structure

A are smaller than those for B.

Fig. 4(a) compaz-es the ISII I responses. For each structure,

entry (1, 1) is larger than entry (2, 2). It means that, when

the lines are perfectly terminated at the load end, the relative

reflection at line 1 due to an excitation at line 1 is larger

than that at line 2 due to an excitation at line 2. Entries

(1, 1) and (2, 2) for structure B, which has smaller interline

coupling, have closer and larger values than those for structure

A. However, entries (1, 2), (2, 3), and (1, 3) for B are smaller

than those for A.

The forward transmission coefficient or IS21 I responses are

plotted in Fig. 4(b). Structure A has larger entry values than

B. The (1, 1) and (2, 2) values are firstly increased at lower

frequencies and reach their maxima at about 4 GHz, where the

\Sll I entries have their minima, then decrease as frequency is

further increased due to the increase of magnitudes of entries

(1, 2), (2, 3), and (1, 3). These three entries can be interpreted

as the “cross talk” for this NCML’s structure.

The [S12 I responses are shown in Fig. 4(c). The relative

cross talk voltage levels are larger than those for IS21I entries.

Note that these cross talk voltage levels are not zero at dc.

This can be explained from (28). Entries (1, 1) and (2, 2) for

structure B are larger than those for structure A.

The 1S22I responses are plotted in Fig. 4(d). According to

(27), the 1S22I entries should have nearly the same magnitudes

as the corresponding ones of IS11 I at lower frequencies.

D. Experimental Measurements

We measure the responses of a pair of symmetrical nonuni-

form coupled microstrips of which the planar view is shown

in Fig. 5(a). At both ends of the circuit, the line width is

chosen to have 500 characteristic impedance and the spacing

is 3.5 times the width so that the interline coupling can be

neglected [10]. The test circuit is fabricated on a low-loss

alumina substrate (G. = 9.9, loss tangent tan 8 s 0.001). A

TaN (Tantalum Nitride) thin film resistive layer, sandwiched

between the substrate and metal, can be used for termination

design. The termination resistance value should be carefully
trimmed during the fabrication process since improper termi-

nation condition will cause unwanted reflections.

The measurement is performed using theHP8510B network

analyzer and the results are shown in Fig. 5(b). The agreement

between the calculated and measured [S1l I responses is fairly

good. The predicted ISZ1I response, however, begins to deviate

1.34 4 3 4 1,34
*++4- ++’-+*

I
(n

1.0

0.9
....

~-
S210.8

t I
0.7

E

Calculated

0.6 Measured

0.5

Frequency (GHz)

(b)

Fig. 5. The results for the experimental nonuniform coupled microstrips.

c, = 9.9, h = 0.254 mm, WI = 0.254 mm, WZ = 0.635 mm,
S1 = 0.889 mm, Sz = 0.508 mm, W(z) := WI + (W2 – W1)2/4,
and S(Z) = S1 + (S2 – S1)z/4. The structure is symmetric about z = 5.5

mm. (a) Circuit geometry. (b) Measured and calculated responses.

from the experimental results at 5 GHz where the length of line

is about one half guided wavelength. The deviation could be

caused by dielectric (ad), conductor (at,), and radiation losses.

Similar deviation is also reported for a tapered three-line

structure [4], where the fitness of prediction and measurement

can be made up at lower frequencies by including the ad”

and aC factors, but the radiation loss is still significant at the

higher frequency end. Note that the electrical length of the test

circuit in Fig. 5 is only about one sixteenth of that used in [4].

According to our experience of designing multiple coupled

microstrip lines on alumina substrate [10], the attenuation

factor including ad and CYCis approximately 0.01 dB/mm. Thus

O!dand a. could have only limited contribution to the deviation

in our experiment and the deviation should be mainly due to

the radiation caused by the line width nonuniformity.

V. CONCLUSION

A RMDE has been formulated for calculating the 2fV-

port network parameters of nonuniform multiple coupled mi-

crostrips. The influence of neglecting p; term in the Riccati

scalar differential equation on the input reflection coefficient

response of a microstrip taper is investigated. From the in-
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vestigation of two tapered three-line microstrips, the smaller

is the line spacing or the higher is the operation frequency,

the higher is the crosstalk level. From the experimental two-

line structure, the calculated and measured results agree well

at lower freqttencies and start to deviate at the frequency at

which the radiation loss, due to the line width nonuniformity,

becomes important.
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